Download Free Audio of There is a popular misconception that science is a... - Woord

Read Aloud the Text Content

This audio was created by Woord's Text to Speech service by content creators from all around the world.


Text Content or SSML code:

There is a popular misconception that science is an impersonal, dispassionate, and thoroughly objective enterprise. Whereas most other human activities are dominated by fashions, fads, and personalities, science is supposed to be constrained by agreed rules of procedure and rigorous tests. It is the results that count, not the people who produce them. This is, of course, manifest nonsense. Science is a people-driven activity like all human endeavor, and just as subject to fashion and whim. In this case fashion is set not so much by choice of subject matter, but by the way scientists think about the world. Each age adopts its particular approach to scientific problems, usually following the trail blazed by certain dominant figures who both set the agenda and define the best methods to tackle it. Occasionally scientists attain sufficient stature that they become noticed by the general public, and when endowed with outstanding flair a scientist may become an icon for the entire scientific community. In earlier centuries Isaac Newton was an icon. Newton personified the gentleman scientist—well connected, devoutly religious, unhurried, and methodical in his work. His style of doing science set the standard for two hundred years. In the first half of the twentieth century Albert Einstein replaced Newton as the popular scientist icon. Eccentric, dishevelled, Germanic, absent-minded, utterly absorbed in his work, and an archetypal abstract thinker, Einstein changed the way that physics is done by questioning the very concepts that define the subject. Richard Feynman has become an icon for late twentieth-century physics—the first American to achieve this status. Born in New York in 1918 and educated on the East Coast, he was too late to participate in the Golden Age of physics, which, in the first three decades of this century, transformed our worldview with the twin revolutions of the theory of relativity and quantum mechanics. These sweeping developments laid the foundations of the edifice we now call the New Physics. Feynman started with those foundations and helped build the ground floor of the New Physics. His contributions touched almost every corner of the subject and have had a deep and abiding influence over the way that physicists think about the physical universe. Feynman was a theoretical physicist par excellence. Newton had been both experimentalist and theorist in equal measure. Einstein was quite simply contemptuous of experiment, preferring to put his faith in pure thought. Feynman was driven to develop a deep theoretical understanding of nature, but he always remained close to the real and often grubby world of experimental results. Nobody who watched the elderly Feynman elucidate the cause of the Challenger space shuttle disaster by dipping an elastic band in ice water could doubt that here was both a showman and a very practical thinker. Initially, Feynman made a name for himself from his work on the theory of subatomic particles, specifically the topic known as quantum electrodynamics or QED. In fact, the quantum theory began with this topic. In 1900, the German physicist Max Planck proposed that light and other electromagnetic radiation, which had hitherto been regarded as waves, paradoxically behaved like tiny packets of energy, or “quanta,” when interacting with matter. These particular quanta became known as photons. By the early 1930s the architects of the new quantum mechanics had worked out a mathematical scheme to describe the emission and absorption of photons by electrically charged particles such as electrons. Although this early formulation of QED enjoyed some limited success, the theory was clearly flawed. In many cases calculations gave inconsistent and even infinite answers to well-posed physical questions. It was to the problem of constructing a consistent theory of QED that the young Feynman turned his attention in the late 1940s.